The Impact of Rapid Wind Variability upon Air–Sea Thermal Coupling

نویسندگان

  • PHILIP SURA
  • MATTHEW NEWMAN
چکیده

The basic effect of extratropical atmosphere–ocean thermal coupling is to enhance the variance of both anomalous sea surface temperatures (SSTs) and air temperatures (AIRT) due to a decreased energy flux between the atmosphere and ocean, called reduced thermal damping. In this paper it is shown that rapidly varying surface winds, through their influence upon the turbulent surface heat fluxes that drive this coupling, act to effectively weaken the coupling and thus partially counteract the reduced thermal damping. In effect, rapid fluctuations in wind speed somewhat insulate the atmosphere and ocean from each other. The nonlinear relationship between the rapidly varying wind speed anomalies and SST and AIRT anomalies results in a rapidly varying component of the surface heat fluxes. The clear separation between the dynamical time scales of the ocean and atmosphere allows this rapidly varying flux to be simply approximated by a stochastic process in which rapidly varying wind speed is represented as Gaussian white noise whose amplitude is modulated by the more slowly evolving thermal anomalies. Such state-dependent (multiplicative) noise can alter the dynamics of atmosphere–ocean coupling because it induces an additional heat flux term, the noise-induced drift, that effectively acts to weaken both coupling and dissipation. Another key implication of the outlined theory is that air–sea coupling includes both deterministic and stochastic components. The theory is tested by examining daily observations during extended winter (November–April) at several ocean weather stations (OWSs). Two important results are found. First, multiplicative noise at OWS P effectively decreases the coupling by about one-third, with about a 10% (20%) decrease in the damping of SST (AIRT). This suggests that multiplicative noise may be responsible for roughly half of the AIRT variability at OWS P on subseasonal time scales. Second, OWS observations reveal that joint probability distribution functions of daily averaged SST and AIRT anomalies are significantly non-Gaussian. It is shown that treating the rapidly varying boundary layer heat fluxes as state-dependent noise can reproduce this observed non-Gaussianity. It is concluded that the effect of state-dependent noise is crucial to understand and model atmosphere–ocean coupling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Role of Ocean–Atmosphere Coupling in the North Pacific Ocean

Air–sea interaction over the North Pacific is diagnosed using a simple, local coupled autoregressive model constructed from observed 7-day running-mean sea surface temperature (SST) and 2-m air temperature TA anomalies during the extended winter from the 18 3 18 objectively analyzed air–sea fluxes (OAFlux) dataset. Though the model is constructed from 1-week lag statistics, it successfully repr...

متن کامل

مطالعه دمای سطح آب و انتقال اکمن در ناحیه خلیج فارس

  The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905). Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport o...

متن کامل

Influence of the Southern Annular Mode on the sea ice-ocean system: the role of the thermal and mechanical forcing

The global sea ice-ocean model ORCA2-LIM is used to investigate the impact of the thermal and mechanical forcing associated with the Southern Annular Mode (SAM) on the Antarctic sea ice-ocean system. The model is driven by idealized forcings based on regressions between the wind stress and the air temperature at one hand and the SAM index the other hand. The wind-stress component strongly affec...

متن کامل

Variability in Sea-Ice Coverage and Ice-motion Dynamics in the PAL LTER Study Region West of the Antarctic Peninsula

Sea-ice conditions and kinematics are studied in the Palmer Long-Term Ecological Research (PAL LTER) study region west of the Antarctic Peninsula. Remote sensing data from ERS-1 Synthetic Aperture Radar (SAR) and Scatterometer (EScat) and from DMSP SSM/I, are used to study the influence of synoptic weather systems on sea-ice characteristics during July-August 1992. Weather records from Palmer S...

متن کامل

Impact of Indo-Pacific feedback interactions on ENSO

12 The impact of Indo-Pacific climate feedback on the dynamics of El Niño Southern Oscil13 lation (ENSO) is investigated using an ensemble set of Indian Ocean decoupling experiments 14 (DCPL), utilising a millennial integration of a coupled climate model. It is found that elim15 inating air-sea interactions over the Indian Ocean results in stronger ENSO variability with 16 various degrees of am...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008